MATH 135 - QUIZ 3 - JAMES HOLLAND 2019-09-24

Question 1. For A a number, consider the function f defined by

$$
f(x)= \begin{cases}2 x+A & \text { if } x<2 \\ 4 x^{2}-8 & \text { if } x \geq 2\end{cases}
$$

For which A is f continuous?

Solution .:.

Since $2 x+A$ and $4 x^{2}-8$ are each continuous (for any A), we just need to make sure they are glued together correctly at $x=2$. In particular, this means $2 \cdot 2+A=4 \cdot 2^{2}-8$, which is just to say $4+A=8$. This is equivalent to $A=4$, and so 4 is the only value of A that makes f continuous.

Question 2. Consider the function $f(x)=x^{2}+5 x$. Compute $f^{\prime}(1)$ using a difference quotient.
Solution .:
The difference quotient for f at 1 is the following:

$$
\frac{f(1+\Delta x)-f(1)}{\Delta x}=\frac{(1+\Delta x)^{2}+5(1+\Delta x)-\left(1^{2}+5\right)}{\Delta x}=\frac{\left(6+7 \Delta x+(\Delta x)^{2}\right)-6}{\Delta x}=7+\Delta x .
$$

Hence the derivative of f at 1 is $\lim _{\Delta x \rightarrow 0} \frac{f(1+\Delta x)-f(1)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(7+\Delta x)=7$.

